Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout.
نویسندگان
چکیده
Hydrogen sulfide (H(2)S) is an endogenous vasodilator in mammals, but its presence and function in other vertebrates is unknown. We generated H(2)S from NaHS and examined the effects on isolated efferent branchial arteries from steelhead (stEBA) or rainbow (rtEBA) trout. H(2)S concentration was measured colorimetrically (CM) and with ion-selective electrodes (ISE) in rainbow trout plasma. NaHS produced a triphasic response consisting of a relaxation (phase 1), constriction (phase 2), and relaxation (phase 3) in both unstimulated vessels and in stEBA precontracted with carbachol (Carb). Phase 1 and phase 3 in stEBA were decreased and phase 2 increased in unstimulated vessels by K(+)(ATP) channel inhibition (glibenclamide), or a cocktail of inhibitors of cyclooxygenase, lipoxygenase, and cytochrome P-450 (indomethacin, esculetin, and clotrimazole). Inhibition of soluble guanylate cyclase with ODQ o NS-2028 inhibited phase 3 in stEBA, although NaHS decreased cGMP production by tEBA. stEBA phase 2 contractions were partially inhibited by the myosin light chain kinase inhibitor, ML-9, but unaffected by L-type calcium channel inhibition (methoxyverapamil), whereas contraction in tEBA was partially inhibited by nifedipine or removal of extracellular calcium. Phase 3 relaxations were more pronounced in stEBA precontracted with Carb and no epinephrine (NE) than those cont acted by KCl or K(2)SO(4). stEBA phase 2 and phase 3 responses were dose dependent (EC(50) = 1.1 +/- 1.2 x 10(-3) M and 6.7 +/- 0.9 x 10(-5) M, respectively; n = 7). NaHS was also vasoactive in steelhead bulbus arteriosus, celiac mesenteric arteries, and anterior cardinal veins. Rainbow trout plasma sulfide concentration was 4.0 +/- 0.3 x 10(-5) M, n = 4 (CM) and 3.8 +/- 0.4 x 10(-5) M, n = 9 (ISE); similar to phase 3 EC(50). Because NaHS has substantial vasoactive effects at physiological plasma concentrations, we propose that its soluble derivative, H(2)S, is a tonically active endogenous vasoregulator in trout.
منابع مشابه
Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats.
Hydrogen sulfide (H2S) has been shown recently to function as an important gasotransmitter. The present study investigated the vascular effects of H2S, both exogenously applied and endogenously generated, on resistance mesenteric arteries of rats and the underlying mechanisms. Both H2S and NaHS evoked concentration-dependent relaxation of in vitro perfused rat mesenteric artery beds (MAB). The ...
متن کاملHydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.
Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinar...
متن کاملBronchodilatory Effect of Hydrogen Sulfide in Rat
Objective(s) The aims of present study were to elucidate the effect of NaHS as a H2S donor on precontracted rat trachea smooth muscle, role of epithelium and nitric oxide in this action. Materials and Methods Tracheal rings from male adult Wistar rats were isolated and mounted in an organ bath containing Krebs–Henseleit solution under 1.5 g resting tension and contractions were recorded isom...
متن کاملIntermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large-conductance Ca(2+)-activated potassium channels.
RATIONALE Myogenic tone, an important regulator of vascular resistance, is dependent on vascular smooth muscle (VSM) depolarization, can be modulated by endothelial factors, and is increased in several models of hypertension. Intermittent hypoxia (IH) elevates blood pressure and causes endothelial dysfunction. Hydrogen sulfide (H(2)S), a recently described endothelium-derived vasodilator, is pr...
متن کاملHydrogen sulfide as an oxygen sensor in trout gill chemoreceptors.
O2 chemoreceptors elicit cardiorespiratory reflexes in all vertebrates, but consensus on O2-sensing signal transduction mechanism(s) is lacking. We recently proposed that hydrogen sulfide (H2S) metabolism is involved in O2 sensing in vascular smooth muscle. Here, we examined the possibility that H2S is an O2 sensor in trout chemoreceptors where the first pair of gills is a primary site of aquat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 286 4 شماره
صفحات -
تاریخ انتشار 2004